
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.2 FEBRUARY 2009
643

LETTER

Jitter-Conscious Bus Arbitration Scheme for Real-Time Systems

Jong-Ho ROH†, Minje JUN†, Kwanhu BANG†, Nonmembers, and Eui-Young CHUNG†a), Member

SUMMARY Jitter is the variation of latencies, when real-time Intel-
lectual Properties (IPs) are accessing data from the data storages. It is a
critical factor for such IPs from the Quality-of-Service (QoS) perspective.
Jitter of a real-time IP can be measured by how frequently it experiences
the underflows and overflows from its data queue in read mode and write
mode, respectively. Such failures critically depend on the bus arbitration
scheme which determines the bus acquisition order of IPs. The proposed
idea allows IPs to inform the bus arbiter of the status of their data buffers
when they assert bus requests. Such information helps the bus arbiter to
determine the bus acquisition order while greatly reducing the jitter. The
experimental results show that our method effectively eliminates the over-
flows and underflows of real-time IPs by dynamically preempting the jitter-
critical bus requests.
key words: jitter, QoS, arbitration, queue, real-time

1. Introduction

Many System-on-Chips (SoCs) for multimedia applications
include real-time constrained IPs such as the controllers for
video streaming and display. For these IPs, constant rate
of data consumption or production is important, since their
behavior is periodic in nature. Real-time IPs have internal
queues (FIFOs) to be robust to the variation of the data trans-
fer latency called jitter. For a large variation of the data
transfer latencies, the queue can be overflow in write mode
and underflow in read mode. The variation is mainly due to
the bus, since it is shared by multiple IPs competing with
each other for the bus acquisition. The proper bus arbitra-
tion scheme should allocate sufficient bandwidth to each IP
without causing any overflows or underflows for each real-
time IP. But it is hard to satisfy both constraints when the
IPs produce heavy workloads dynamically. In real-time sys-
tems, the overflow or underflow of real-time IPs due to the
jitter is more severe than the insufficient bandwidth from a
QoS perspective, since the former is translated to the failure
of completing the given mission, while the latter is usually
translated to the performance degradation. The proposed
method effectively trades off these two factors by monitor-
ing the quantized queue length of IPs representing the ur-
gency of overflow or underflow. More precisely, our method
arbitrates the bus requests from the bandwidth perspective
unless there is a jitter-critical request, but it changes its arbi-
tration policy when it observes a jitter-critical request such
that the highest bus acquisition priority is given to the re-

Manuscript received April 7, 2008.
Manuscript revised September 9, 2008.
†The authors are with Yonsei University, Seoul, Korea.

a) E-mail: eychung@yonei.ac.kr
DOI: 10.1587/transfun.E92.A.643

quest with the sacrifice of other IPs’ bandwidths.
In Sect. 2 we address the previous QoS arbitration

schemes and the proposed scheme. In Sects. 3 and 4, we
describe our method and its applications, respectively. Fi-
nally, the experimental results are shown in Sect. 5 followed
by a conclusion in Sect. 6.

2. Previous QoS Arbitration Schemes

Many research groups have worked on the QoS-guaranteed
arbitration scheme for shared bus architectures. The meth-
ods in [1] and [2] aimed at optimizing the average cases
rather than the peak cases for the latency as well as band-
width. In [1], LOTTERYBUS was introduced and it im-
proved the latency problem of Time-Division Multiple Ac-
cess (TDMA) and Round-robin arbitration schemes by al-
locating the bandwidth in a statistical manner. It showed
outstanding results for high bandwidth IPs with a short la-
tency constraint, but it could not handle efficiently for low
(high) bandwidth IPs with a short (long) latency constraint.
The methods for real-time IPs are also proposed in [3] and
[4]. However, their performance drastically decreases when
the total requested bandwidth from the IPs reaches the sys-
tem bandwidth. The aforementioned techniques focused on
the latency satisfaction under the bandwidth constraint. On
the other hand, our approach does not consider the latency
constraint, but a jitter for fully exploiting the advantage of
internal buffers (data queues) of IPs. Hence, our method
is more aggressive by redistributing the bandwidth of non
jitter-critical IPs (non real-time IPs or real-time IPs with a
data queue filled with moderate amount of data) to the jitter-
critical IPs (real-time IPs whose queue is almost empty or
full).

3. Jitter-Conscious QoS Arbitration Scheme

3.1 Overall Architecture

The proposed jitter-conscious QoS arbitration scheme con-
sists of two blocks — jitter detection block and arbiter block.
Figure 1 shows a shared-bus architecture adopting our
method, where we denote master IP i as Mi. The arbiter
block can be implemented with any arbiters such as fixed-
priority, round-robin, and so on. However, our major contri-
bution is on the jitter Detection Block (JDB) which is the
core of our method. In Fig. 1, M1 and M2 are non real-
time IPs whose requests can be delayed without violating

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



644
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.2 FEBRUARY 2009

Fig. 1 Jitter-conscious QoS arbiter.

any system requirements. On the other hand, M3 and M4

are real-time IPs. Each real-time Mi has additional signals
called QS i to deliver its queue status to JDB which com-
putes the dynamic weight of each request based on QS i.
The larger the dynamic weight is, the more critical the corre-
sponding bus request is from the jitter perspective. Finally,
the dynamic weight is delivered to the arbiter, and then the
arbiter performs a resolution function which resolves the de-
cision of JDB and the decision of arbiter.

3.2 Queue Status Information

QS i, the queue status of Mi is computed by the IP it-
self. Whenever Mi asserts a request, it computes QS i us-
ing Eq. (1) in read operation and Eq. (2) in write operation.
QCi = {1, 2, · · · ,QDi} and QDi are the current queue length
and the queue size of Mi, respectively. Also, N represents
the bit width of QS i.

QS i = �(QDi − QCi)/QDi × 2N�
= (QDi − QCi − 1) � (N − log2 QDi) (1)

QS i = QCi � (N − log2 QDi) (2)

In Eq. (1), the lower line expression is a cost-effective
version by replacing the division with logical shift opera-
tion. Note that the logarithm term is a constant, since QDi is
fixed at design time. In Eq. (1) for read operation, large QCi

means that future data to be consumed by Mi is buffered
enough. Hence, large QS i generates small QDi, meaning
that the jitter urgency is low. On the other hand, they have a
opposite relation in Eq. (2) for write operation. The resolu-
tion of QS i is determined by its bit width, N. The finer reso-
lution of QS i is preferred when many real-time IPs are com-
peting, since the jitter-urgency can be finely distinguished
with area increase (larger N).

3.3 Dynamic Weight

We denote the dynamic weight as WDi for brevity. WDi is
a weighted QS i to consider the difference of value system
between QS i and the arbiter. Typically, an arbiter prioritize
the connected masters using a range of fixed-point numbers.
For instance, a fixed-priority arbiter prioritize the masters
from 0 to 15 in case AHB bus which allows up to 16 masters

to be connected. On the other hand, the range of QS i is
from 0 to 2N , where N is typically set to 1 or 2 to minimize
the bus wiring overhead. If the value range of an arbiter
is large, the impact of QS i on arbitration will be marginal
due to the large difference of value range. To compensate
such mismatches, we introduce a dynamic weight denoted
by WDi as shown in Eq. (3).

WDi = QS i × w (3)

where, w scales QS i to be comparable to the arbiter’s value
system. To implement Eq. 3 in a simple manner, we limit
w to be 2k, which replaces the multiplication in Eq. (3) by a
shift operation. Also, k is determined using Eq. (4).

k = � log2 V � − log2 A (4)

where, V is the magnitude of the arbitration value range and
A is the maximum number of masters to be connected to the
target bus. Hence, w is V quantized by A to scale QS i for
target arbitration scheme.

3.4 Resolution Function

Resolution function is located inside the arbiter. When the
arbiter receives WDi from JDB, it performs the resolution
function for its final decision. The resolution function can
be defined depending on the characteristic of the arbitration
algorithm as shown in Eq. (5).

p′i = F(WDi, pi) (5)

where, function F is an arbitrary function for the resolution,
WDi is the dynamic weight of Mi. Also, pi is the priority
of Mi given by the conventional arbiter and p′i is the modi-
fied priority of Mi after the resolution function is performed.
Note that most of arbitration algorithms have the priority
list for the masters connected to the corresponding shared
bus. For instance, fixed priority arbitration scheme has a
static priority list of masters, while the round robin arbitra-
tion scheme has a dynamic priority list of masters which is
updated whenever an arbitration is performed. The arbiter
selects the final winner among the requesting masters based
on p′, the modified priorities of IPs. In our work, we de-
fine the resolution function by either a multiplication or a
addition. Multiplication is appropriate for more tightly con-
strained real-time systems, while the addition is appropri-
ate for relatively softly constrained real-time systems. Note
that the resolution function using multiplication more ag-
gressively forces the arbiter to manage the jitter-critical re-
quests (higher QS i) with higher priority.

4. Extended Arbitration Schemes for Jitter Reduction

4.1 Jitter-Conscious Fixed Priority Scheme (JCFP)

The conventional fixed priority arbitration scheme (CFP) is
one of the most popular arbitration schemes used in on-chip



LETTER
645

Fig. 2 Jitter-conscious fixed priority scheme.

bus architectures. The bus access priority is statically de-
fined a priori. The bus arbiter grants the bus access right
to the master with the highest priority among the request-
ing masters. The proposed method incorporates with CFP
by changing the priority dynamically for the jitter-critical
requests based on WDi. In JCFP case, we set w = 2k to 1,
since k becomes 0 based on Eq. (4), where the value range of
a fixed-priority scheme cannot be larger than the maximum
number of masters to be connected. If the multiplication is
used as a resolution function, it can be represented as shown
in Eq. (6).

p′i =

⎧
⎪⎪⎨
⎪⎪⎩

WDi ∗ pi if WDi ! = 0,

pi otherwise.
(6)

where, pi is the priority value of Mi in the conventional fixed
priority scheme. The condition that WDi = 0 only occurs
when QS i = 0, since w cannot be 0 in any case. In other
words, Mi is never urgent from the jitter perspective when
WDi = 0. In such situation, we let the arbiter operate in
its own nature by avoiding the multiplication On the other
hand, the resolution function using addition is represented
as Eq. (7).

p′i = WDi + pi (7)

The overall implementation of JCFP is shown in Fig. 2
with a resolution function of Eq. (6), where X represents
multiplication and “+” represents “logical or” operation.
After computing pi using Eq. (6), the Comparison and grant
generation hardware block selects the winning master based
on the pi. If a master Mi is not in jitter-urgent state then
WDi will be zero and it is acted as the conventional priority
scheme. Our method with a fixed priority scheme is espe-
cially effective for low bandwidth jitter-critical IPs which
are the major problem makers when we adopt CFP, since p′i
can be easily enlarged by QS i or WDi compared to the small
arbitration value range of CFP.

4.2 Jitter-Conscious LOTTERYBUS (JC-LOTTERY)

The LOTTERYBUS [1] is a probabilistic arbitration algo-
rithm implemented in a lottery manager for the bus arbi-
tration. The major benefit of LOTTERYBUS is bandwidth

Fig. 3 Jitter-conscious LOTTERYBUS.

fairness, since the arbiter can allocates the bus bandwidth to
each master by predefined amount in a probabilistic manner
using the concept of tickets. For this reason it has a large at-
tention from bandwidth-conscious real-time systems. How-
ever, it does not consider the latency issue (and jitter issue)
which can be solved with our method proposed in this pa-
per. The lottery tickets acting as the weight are accumu-
lated through the lottery manager in a shared bus architec-
ture. Let T = t1, t2, · · · , tn is the set of ticket values as-
signed to each master. Note that ti represents the ratio of
the bandwidth allocated to Mi over the system bandwidth.
Let R = r1, r2, · · · , rn is the set of bus requests. If Mi has a
pending request, ri = 1. Otherwise ri = 0. The master Mi

is granted with the probability of P(Mi) by favoring compo-
nents with larger ticket values based on Eq. (8).

P(Mi) =
ri × ti

∑n
j=1(r j × t j)

(8)

where, P(Mi) is the granting probability of Mi. Since LOT-
TERYBUS is a stochastic method, a master with lower
P(Mi) may be granted.

For jitter-conscious LOTTERYBUS, our method incor-
porates with LOTTERYBUS by increasing ti dynamically
for the jitter-critical requests using WDi. For this purpose, ti
is used as pi for the resolution function which is defined as
Eq. (9).

pi = ti

p′i =

⎧
⎪⎪⎨
⎪⎪⎩

WDi ∗ pi if WDi ! = 0,

pi otherwise.

(9)

Note that pi is multiplied by WDi as in JCFP, but the
value range of pi is much wider than JCFP, since ti needs to
be large enough to consider the given probability precision.
For instance, if the probability precision is 0.001, the range
of ti is from 0 to 999. Using Eq. (4), w becomes 64. Other
part of the resolution function is similar to that in JCFP. The
resolution function can be also implemented with an addi-
tion. But it less effective, since the wide value range of ti.

JC-LOTTERY is implemented as in Fig. 3. After com-
puting p′i , the Bitwise-AND block filters out the weights of
the idle masters in the current cycle. Adder Tree generates



646
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.2 FEBRUARY 2009

the boundary condition of each request for selecting the win-
ning master based on the number from the random number
generator. To summarize, ti is weighted in our scheme de-
pending on the jitter criticality of requests using WDi, hence
the bandwidth-conscious ticket value is adjusted to mini-
mize the jitter, which is not possible in the LOTTERYBUS.

5. Experimental Results

We implemented the proposed scheme with the cycle-level
accuracy using SystemC. The exemplary architecture shown
in Fig. 1 is explored in this experiment. Note that M1 and M2

are non real-time IPs, while M3 and M4 are real-time IPs.
The bus protocol is AMBA AHB and the slave is a SDRAM
controller with an external SDRAM. We show the experi-
mental results only for read operations, since the results for
write operations are similar to those of read operations.

5.1 Result of Jitter-Conscious Fixed Priority Scheme

We compared JCFP to CFP in this experiment. The required
bandwidth from each master is shown in Table 1. The prior-
ity of masters is in the order of M4, M2, M3, and M1, since
M4 and M2 require higher bandwidth than the other two.
Also, M4 has a higher priority than M2 due to the real-time
constraint. M3 has a higher priority than M1 for the same
reason. Finally, we set N to 2 for the JCFP scheme.

We compared both schemes when the total required
workload is varying from 80% to 180% of the system band-
width as shown in Fig. 4. For the light workload (e.g. 80%),
both schemes well allocate the system bandwidth as re-
quested. However, the allocated bandwidth ratio does not
match to the required bandwidth ratio as the total workload
becomes lager (from 100%) for both cases. It is expected
result, since the arbitration scheme loses its control over the
system bus due to the heavy workloads beyond the system
bus capacity. Nevertheless, there is a big difference between

Table 1 The bandwidth requirements from IPs.

IP Bandwidth Real-time

M1 16.7% no
M2 33.3% no
M3 16.7% yes
M4 33.3% yes

Fig. 4 Bandwidth allocation of JCFP and CFP.

these two schemes. As the input workload increases, CFP
allocates more bandwidth to M4 and M2, since they have
higher priorities than the other two. Also, the other masters
(M3 and M1) rarely have chances to be granted for the bus,
hence M3 frequently experiences the underflows as shown
in Fig. 5. On the other hand, JCFP allocates more band-
width to M3 than CFP, while sacrificing the bandwidth allo-
cated to M2 for protecting jitter violation. For this reason,
M3 rarely violates the given real-time constraint with JCFP.
Note that M1 and M2 are non real-time IPs, hence underflow
or overflow does not mean the system malfunction, but per-
formance degradation. When an underflow occurs for these
IPs, they are stalled until the data is ready. On the con-
trary, the occurrence of underflow for M3 and M4 eventually
causes the system malfunction due to the constraint viola-
tions. Therefore, JCFP performs better arbitration than CFP
by favoring real-time IPs.

Even though JCFP outperforms FCP from the jitter per-
spective, the bandwidth allocation is not satisfiable, since
non real-time IPs can significantly degrades the overall sys-
tem performance due to their long data latencies. The
bandwidth fairness issue can be resolved by integrating our
scheme with better bandwidth-conscious arbiter. The LOT-
TERYBUS is one of the bandwidth conscious arbitration
scheme and we will demonstrate the experimental results of
our scheme which is integrated with LOTTERYBUS rather
than CFP in Sect. 5.2.

5.2 Result of Jitter-Conscious LOTTERYBUS

The similar comparison was performed for JC-LOTTERY
and LOTTERYBUS. The allocated bandwidth and the un-
derflow counts are shown in Fig. 6 and Fig. 7, respectively.
First, JC-LOTTERY does not incur any underflows for M3

and M4 like JCFP as shown in Fig. 7. Thus, it is shown
that our method minimizes the jitter of real-time IPs with
any existing arbitration schemes effectively. On the other
hand, in Fig. 6, we could observe that the mismatch of al-
located bandwidth with JC-LOTTERY and LOTTERYBUS
against the required bandwidth has become less critical than
JCFP and CFP, respectively. For instance, when the total in-
put workload is 180% of system bandwidth, JC-LOTTERY
allocates 3MB/sec and 4MB/sec to M1 and M2, respec-

Fig. 5 Underflow counts of fixed priority scheme.



LETTER
647

Fig. 6 Result of bandwidth allocation of LOTTERYBUS.

Fig. 7 Underflow counts of LOTTERYBUS.

tively. JCFP, however, rarely allocates bandwidth to M1

which eventually experiences the starvation. It means that
our method becomes more effective when it is integrated
with more bandwidth-conscious arbitration scheme by pro-
tecting the bandwidth starvation of non real-time IPs while
showing the same jitter effect for real-time IPs.

6. Conclusions

We propose an arbitration scheme for minimizing the varia-
tion of access latency called jitter. Our method reduces the
jitter not to be larger than a certain level so that real-time
IPs are free from the failures such as underflow and over-
flow. Ideally, our method can control the failures as zero
even when the input workload requires larger than the sys-
tem bandwidth.

Acknowledgments

This work was supported in part by “System IC 2010”
project of Korea Ministry of Knowledge Economy, by Ko-
rea Research Foundation Grant funded by the Korean Gov-
ernment (MEST) KRF-2007-313-D00578, and by IDEC (IC
Design Education Center).

References

[1] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “The LOT-
TERYBUS on-chip communication architecture,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol.14, no.6, pp.596–608, June
2006.

[2] W.D. Weber, J. Chou, I. Swarbrick, and D. Wingard, “A quality of
service mechanism for interconnection networks in system on chips,”
DATE 2005, pp.1232–1237, 2005.

[3] B. Lin, G. Lee, J. Huang, and J. Jou, “A precise bandwidth control
arbitration algorithm for hard real-time SoC buses,” ASP-DAC’07,
pp.165–170, Jan. 2007.

[4] C.-H. Chen, G.-W. Lee, J.-D. Huang, and J.-Y. Jou, “A real-time and
bandwidth guaranteed arbitration algorithm for SoC bus communica-
tion,” ASP-DAC’06, pp.600–605, Jan. 2006.

[5] AMBA Specification (Rev 2.0), ARM IHI 0011A.


